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Abstract 

Quantum computers have the potential to revolutionize materials science by providing a new 

paradigm for simulating and designing materials, such as to simulate the behavior of molecules, 

providing insights into chemical reactions and could help to study the electronic structure of 

materials, which is critical to understanding their optical and electrical properties. However, high 

number quantum gate in circuit which represents material’s system can cause abstract representation 

and tremendously difficult for quantum computer. Several works have been attempted to improve 

the simplicity of quantum circuits to be applied in current quantum devices.  

In this work, adaptive circuit compression method is implemented for quantum gate synthesis. The 

decomposition process is optimized using ADAM and BFGS optimizers. 6 different cost functions 

are calculated with addition of correction order consisting of 2 cost function’s norms: Frobenius and 

Hilbert-Schmidt. The decomposition processes are conducted in different iteration numbers and 

tolerance limits. The investigation reveals that Hilbert-Schmidt norm has outstanding stability when 

it is applied for decomposition of Q block quantum circuit, which has been used to obtain the ground 

state of P-Benzyne and Naphthalene. The execution time and the decomposition error of Hilbert-

Schmidt norm is proportionally small and steady, whether it is observed in various maximum 

iterations values or tolerances. However, the existence of correction order doesn’t give significant 

improvement in the effectivity and the efficiency of the cost function, yet the Hilbert-Schmidt norm 

of cost function is a good candidate to be applied since it contributes to the likelihood of observing 

small errors close to machine precision.  
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1 | Introduction 

Recent developments in computer technology have made remarkable advances in assisting scientists 

and engineers to simulate several phenomena in order to get exact data as similar as what actually 

happens in nature. A new breakthrough has been explored exhibiting a new possibility to deeply 

understand the physical and chemical properties of atoms, molecules, and materials using quantum 

computers, which is based on the quantum mechanic’s principle.  Quantum mechanics is the theory 

of physics that emerged to surpass the limitation of classical physics and this theory is the most 

accurate and complete theory in the world specially to describe physical and chemical phenomena. 

However, there is still some work that needs to be done to utilize this technology in computational 

physics and chemistry’s field. 

1.1 Brief Introduction to Quantum Computing 

Classically, information is encrypted by a series of bits, which represents by two different states and 

prominently labeled as 0 and 1 [1]. Quantum system has a similar idea to deliver information, 

however, the system is not necessarily in state 0 or 1. The system is rather in a superposition between 

0 and 1 with mismatched probabilities. This means that the system can have the characteristics of 

both the states concurrently, at all times, until the measurement. To represent a bit in quantum world, 

two level systems are considered and usually called as quantum bit or qubit [2].  

Qubits have characteristics of both states at the same time until they are measured. The superposition 

of qubits can facilitate broad computational space which can solve many complex problems because 

of its exponential space increment compared to bits [3]. This superiority can bring out quantum 

computing to handle large datasets with only a small number of qubits. Moreover, qubits can be also 

placed in entangled states. This means that qubits are intrinsically linked to each other, so that one 

qubit can dictate the possible measurement outcomes for another qubits, regardless how far apart 
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these objects are and this property is an important feature of qubit that can be exploited for quantum 

simulation of related systems [4].  

1.1.1 Qubit States 

A state of quantum system is described as vectors in a 2-dimensional Hilbert space, which are usually 

spanned by states ǀ0⟩ and ǀ1⟩. These computational basis vectors correspond to the classical bits 0 

and 1 respectively. The general state of this system can be expressed as an arbitrary state ǀ𝜓⟩ which 

is linearly weighted in orthonormal basis of {ǀ0⟩ , ǀ1⟩ } [5].  

 ǀ𝜓⟩ =  𝛼0ǀ0⟩ +  𝛼1ǀ1⟩ =  𝛼0 [
1
0

] +  𝛼1 [
0
1

] =  [
𝛼0

𝛼1
] , (1) 

where the weighting factors 𝛼0, 𝛼1 𝜖 ℂ are often called probability amplitudes and they must meet 

the normalization criteria: |𝛼0|2 + |𝛼1|2 = 1. This linearly weighted position of computational basis 

vectors is commonly termed as superposition. Therefore, when the qubit is measured, it can represent 

either “0” or “1” similar to the digital bits [6]. |𝛼0|2 shows the probability of the outcome ǀ0⟩ which 

measures “0” while |𝛼1|2 describes the probability for the outcome ǀ1⟩ which measures “1”.  

In spherical coordinates system, an arbitrary position of qubit state can be transformed in the term 

of two angles, denoted by θ and φ respectively. Thus, the general state can be rewritten as: 

 ǀ𝜓⟩ = cos (
𝜃

2
) ǀ0⟩ +  𝑒𝑖𝜑 sin (

𝜃

2
) ǀ1⟩ .  (2) 

 The state vector is generally depicted as a vector pointing to the surface of a 3-dimensional sphere, 

called Bloch sphere, as shown in Figure 1.1. Since state vectors are required to have a norm of 1 and 

to be equivalent up to the global phase, two real parameters θ and φ are adequate to characterize a 

state vector [6]. The point on the surface of Bloch sphere can be also written in Cartesian coordinates 

as: 

 (𝑥, 𝑦, 𝑧) = (sin 𝜃 cos 𝜑 , sin 𝜃 sin 𝜑 , cos 𝜃) . (3) 
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Figure 1.1 Qubit state representation on Bloch sphere. ǀ0⟩ and ǀ1⟩ represent the z-axis of Bloch 

sphere, which have the same analogy as North and South pole, ǀ0⟩ is North and ǀ1⟩ is South, and 

thus, any vector that doesn’t represent directly ǀ0⟩ or ǀ1⟩ would be considered as superposition of 

both. While θ and ϕ are the angles of qubit state and ǀ𝜓⟩ is the single qubit vector.  

 

Equally to classical devices, a collection of n qubits is called quantum register of size n. The amount 

of computational basis vectors to form arbitrary superposition of these vectors can be defined as N 

= 2n. If the content of qubits in the quantum register is known, then the quantum state of quantum 

register can be calculated for independent qubits by means of a tensor product.  

Suppose there are two independent qubits, ǀ𝜓1⟩ =
ǀ0⟩+ǀ1⟩

√2
 and ǀ𝜓2⟩ =

ǀ0⟩+ǀ1⟩

√2
, and these two qubits are 

combined, which results to the state of four-dimensional quantum register as follows: 

 

ǀ𝜓⟩ =  ǀ𝜓1⟩ǀ𝜓2⟩ = ǀ𝜓1, 𝜓2⟩=ǀ𝜓1𝜓2⟩ 

ǀ𝜓⟩ =
ǀ0⟩ ⊗ ǀ0⟩ + ǀ1⟩ ⊗ ǀ0⟩ + ǀ0⟩ ⊗ ǀ1⟩ + ǀ1⟩ ⊗ ǀ1⟩

2

=
ǀ00⟩ + ǀ01⟩ + ǀ10⟩ + ǀ11⟩

2
, 

(4) 
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and from this equation, it can be observed that two qubits register consists of four weighted 

computational basis vectors which denotes as ǀ00⟩, ǀ01⟩, ǀ10⟩ and ǀ11⟩. For a two-qubit system, a 

subset of qubits can be just measured, let’s assume the first qubit is measured and  ǀ𝜓1⟩ = ǀ0⟩ will 

be the outcome, the quantum register state will transform because of the measurement into: 

 ǀ𝜓⟩ = ǀ0⟩ ⊗
ǀ0⟩ + ǀ1⟩

√2
=

ǀ00⟩ + ǀ01⟩

√2
, (5) 

and proves that quantum register collapses to the subset of the whole Hilbert space and a general 

state for two qubits to an n-qubit register can written as [5]:  

 ǀ𝜓⟩ =  ∑ 𝛼𝑖ǀ𝑖⟩

2𝑛−1

𝑖=0

 , (6) 

where 𝛼𝑖 stands for probability amplitude and ǀ𝑖⟩ is its computational basis state.  

1.1.2 Single Qubit Gate 

Quantum gate can be defined as the operator in Hilbert space performed on the quantum registers 

and alters its state by rotation on the individual qubits [7]. This operator is unitary and the action of 

quantum gate, U can be described as a state transformation by this following equation: 

 ǀ𝜓′⟩ = 𝑈ǀ𝜓⟩ , (7) 

where ǀ𝜓⟩ is the starting state and ǀ𝜓′⟩ is the final state of qubit. The unitary operations of single 

qubit can be represented by 2 x 2 unitary matrices [8]. The most widely used single qubit gates are 

Identity gate, Pauli X gate, Pauli Y gate, Pauli Z gate, and Hadamard gate.   

Identity gate is no-operation gate on one qubit. This gate doesn’t create any modification on the basis 

state. In matrix form it is described as identity matrix.  

 𝐼 =  [
1 0
0 1

] . (8) 
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Pauli X gate acts a 
𝜋

2
 rotation along the x-axis. This gate is similar to a classical NOT operator, which 

flip the qubit from ǀ0⟩ to ǀ1⟩ or vice versa. The matrix form of Pauli X gate is given by: 

 𝑋 =  [
0 1
1 0

] . (9) 

Pauli Y gate creates rotation along y-axis on the qubit by π radians. This gate can be considered as 

the combination of Pauli X and Z gate [9]. This following equation shows the matrix form of Pauli 

Y gate.  

 𝑌 =  [
0 −𝑖
𝑖 0

] . (10) 

Pauli Z gate rotates the qubit along z-axis by π radians. This gate is known as phase-flip gate, and 

it flips the phase of ǀ1⟩ relative to ǀ0⟩ state. The matrix of Pauli Z gate can be described as: 

 𝑍 =  [
1 0
0 −1

] . (11) 

Hadamard gate gives rotation by π radians along diagonal axis to the xy plane, which makes this 

gate become the most interesting and useful among other single qubit gates [9]. Hadamard gate is 

known as phase-rotator gate or phase gate, and it performs with this following matrix operation. 

 𝐻 =  
1

√2
[
1 1
1 −1

] . (12) 

However, Hadamard gate is not only unitary matrix, but it is also Hermitian matrix (𝐻† = 𝐻). This 

gate can create different probability amplitudes but the same probability vector [5]. The diagram of 

states of Identity gate, Pauli X gate, Pauli Y gate, Pauli Z gate, and Hadamard gate can be viewed 

in Figure 1.2.  

Arbitrary rotation can also be performed by single qubit gate along x, y, or z-axis. This gate is usually 

called R gate. Rotation along x-axis by θ radians is carried by RX-gate, while along y-axis by θ 

radians by RY-gate, and ϕ radians rotation along z-rotation by RZ-gate, which their diagrams of 
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state are depicted in Figure 1.3. Matrix representations of RX, RY and RZ gates can be written in 

the form as: 

 

𝑅𝑥(𝜃) = [
cos (

𝜃

2
) −𝑖 𝑠𝑖𝑛 (

𝜃

2
)

−𝑖 𝑠𝑖𝑛 (
𝜃

2
) cos (

𝜃

2
)

] 

𝑅𝑦(𝜃) =  [
cos (

𝜃

2
) − 𝑠𝑖𝑛 (

𝜃

2
)

𝑠𝑖𝑛 (
𝜃

2
) cos (

𝜃

2
)

] 

𝑅𝑧(𝜙) =  [𝑒−𝑖
𝜙

2 0

0 𝑒𝑖
𝜙

2

] . 

(13) 

 

 

Figure 1.2 Single qubit quantum gate illustration. Q represents the qubit and the single line which 

goes through the square gate represents that the system contains one qubit. A) Identity gate, B) 

Pauli X gate, C) Pauli Y gate, D) Pauli Z gate and E) Hadamard gate. 

 

These rotation gates can also be written in the Pauli matrix term as: 

 

𝑅𝑥(𝜃) = cos
𝜃

2
 𝐼 − 𝑖 sin

𝜃

2
 𝑋 =  𝑒

−𝑖𝜃𝑋
2  

𝑅𝑦(𝜃) = cos
𝜃

2
 𝐼 − 𝑖 sin

𝜃

2
 𝑌 =  𝑒

−𝑖𝜃𝑌
2  

𝑅𝑍(𝜙) = cos
𝜙

2
 𝐼 − 𝑖 sin

𝜙

2
 𝑋 =  𝑒

−𝑖𝜙𝑍
2  . 

(14) 
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Figure 1.3 Quantum circuit of Rx, Ry and Rz gate. π/2 means the rotation that the gate applies 

along the corresponding axis. 

 

A general rotation around an arbitrary axis can be given as a product of the previous rotations which 

known as unitary gate, which can be stated as: 

 𝑈 = 𝑒𝑖𝛼𝑅𝑧(𝛽)𝑅𝑦(𝛾)𝑅𝑧(𝛿), (15) 

where 𝛼, 𝛽, 𝛾, and 𝛿 are the Euler angles of U in ZYZ basis.  

1.1.3 Multiple Qubit and Entangled States 

Generally, quantum circuits contain two or more qubits. The qubits simultaneously store 

information, which most of this information can’t be accessed during measurement. Nonetheless, 

this information can only be revealed by a joint measurement of the qubits [9]. Tensor product is 

used to describe the generate state of independent two or more qubits. For instance, when there are 

two qubits ǀ𝜓1⟩ =  𝛼0ǀ0⟩ + 𝛼1ǀ1⟩ and ǀ𝜓2⟩ =  𝛽0ǀ0⟩ + 𝛽1ǀ1⟩ then the quantum state as tensor 

product of these two qubits system can be written in the equation as: 

 ǀ𝜓⟩ =  ǀ𝜓1⟩ ⊗  ǀ𝜓2⟩ = 𝛼0𝛽0ǀ00⟩ +  𝛼0𝛽1ǀ01⟩ +  𝛼1𝛽0ǀ10⟩ + 𝛼1𝛽1ǀ11⟩ . (16) 

However, for multiple qubit systems, the quantum state can’t always be expressed as in the Equation 

(16). When 2 or more qubits are independently of each other and isolated, then it forms a closed 

system, and the state can be expressed as its product. Nevertheless, when qubits are not independent, 

then both qubits will bound together, and this special condition is well-known as entanglement [8].  
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Based on Equation (16), two-qubit state can be represented as 4 x 4 matrix form. Some examples of 

the most useful two qubit gates are controlled-NOT (CNOT) gate and controlled-Z(CZ) gate, which 

the matrix forms and the state diagram are describe in Figure 1.4. CNOT gate has two input qubits, 

the control qubit, and the target qubit. This gate implements an X-gate to the target qubit if control 

qubit is ǀ1⟩ and there is no change in target qubit if control qubit is ǀ0⟩. Furthermore, CZ gate acts 

on two qubit gates and it amends the phase angle of target qubit by an angle of φ if the control qubit 

is in ǀ1⟩ state. The target qubit is unchanged when the control qubit is ǀ0⟩. 

 

Figure 1.4 Matrix form and quantum circuit of a) CNOT gate and b) CZ gate. These gates have 

two input qubits. CNOT gate flips the state of target qubit if the control qubit in ǀ1⟩ and does 

nothing if it is in  ǀ0⟩ state. While CZ gate changes the phase angle of target qubit if the control 

qubit is in ǀ1⟩ state.  

 

1.2 Description of Variational Approach for Molecular System 

Determining the molecular structure is the most debated topic among scientists because until this 

day there is still no efficient algorithm to solve the ground state energy of many-body interacting 

fermionic Hamiltonians. Several attempts have been conducted to solve this problem using quantum 
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computing which gives promising assets such as super rapid calculations compared to classical 

devices. To compute this problem in quantum computer, mapping between fermionic and qubit 

operators is considered and representing it as a local Hamiltonian problem on a set of qubits [10]. A 

k-local Hamiltonian H, consisted of terms acting on at most k qubits, is solved by finding the smallest 

eigenvalue, EG,  

 𝐻 ǀ𝜓⟩ =  𝐸𝐺 ǀ𝜓⟩ . (17) 

 

Figure 1.5 Schematic diagram of variational quantum Eigensolver. The energy of Hamiltonian by 

setting up using variational parameter θ. The steps under darker blue box are performed with 

classical computer and lighter box with quantum computer. The Hamiltonian is then mapped, and 

initial set parameter is chosen for the initial wave function. The trial ansatz is then prepared on 

quantum computer with parameterized gates and then the process is repeated until the 

convergence criterion. 
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Variational quantum eigensolver (VQE) is one of the most prominent quantum algorithms and this 

algorithm’s advantage surpasses other algorithms, in which don’t require lot of qubits and gate for 

small system [11]. In VQE, both quantum and classical resources are used to discover variational 

solutions to eigenvalue problems, as the workload of VQE is shown in Figure 1.5. As a typical setup, 

a molecule's ground state trial wavefunction is built from classically computed Hartree-Fock wave 

functions for single and double excitations [12]. Subsequently, the trial wave function is adapted on 

quantum computer and the expected value of the Hamiltonian is measured. Next, the trial wave 

function’s parameters are optimized on a classical computer based on the variational principle. This 

trial wave function or ansatz are variationally set until the expected value of the electronic 

Hamiltonian [11].  

 𝐸 ≤
〈𝜓 (𝜃)ǀ 𝐻̂𝑒𝑙ǀ𝜓 (𝜃)〉

〈𝜓 (𝜃)ǀ 𝜓 (𝜃)〉
 , (18) 

where 𝜓 (𝜃) is the ansatz with dependency on the vector of parameter 𝜃, E is the ground state of 

energy and 𝐻̂𝑒𝑙 is the electronic Hamiltonian. The Hamiltonian of indistinguishable fermions must 

be mapped onto Hamiltonian of distinguishable qubits to examine the energy on quantum computer 

by using a mapping method. There are 3 common mapping method such as Jordan-Wigner, Parity 

and Bravyi-Kitaev. Regardless of this mapping option, the resulting qubit Hamiltonian can be 

formulated as: 

 𝐻̂ = ∑ 𝛼𝑗𝑃𝑗 = ∑ 𝛼𝑗 ∏ 𝜎𝑗
𝑖

𝑖𝑗𝑗

, (19) 

where αj are real scalar coefficients that depend on the single-electron or two-electron excitations. 𝑖 

represents which qubit the Pauli operator takes place and 𝑗 is term of Hamiltonian. Pj’s are Pauli 

strings which hare defined by a product of Pauli matrices 𝜎𝑗
𝑖, 𝑃𝑗 =∈  {𝐼, 𝑋, 𝑌, 𝑍}⊗𝑁, with N is the 

number of qubits which is used in the model of wavefunction. After the qubit Hamiltonian is 
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obtained from classical device and the ansatz is chosen, the trial wave function 𝜓 (𝜃) is arranged in 

quantum computer and the energy that is measured by the quantum computer can be expressed as: 

 𝐸 (𝜃) = ∑ 𝛼𝑗 〈𝜓 (𝜃)ǀ ∏ 𝜎𝑗
𝑖

𝑖

ǀ𝜓 (𝜃)〉

𝑁

𝑗

, (20) 

where N is number of terms in the Hamiltonian and 𝜃 is the vector of variational parameter. This 

Hamiltonian can possess up to M4 terms, where M is the number of basis functions. However, the 

state preparation step must be performed repeatedly for each term due to Pauli string operator 

representation of these terms. Additionally, to assemble enough expectation value statistics, all 

individual terms also must be measured in enough times. This energy calculation method is known 

as Hamiltonian averaging [13].  

The main issue in VQE is determining the efficient entangler circuit. There are some characteristics 

which can lead to the efficient term, such as representing target quantum states in the limit of an 

intermediate depth efficiently, having a low number of independently realizable gate elements, 

showing a simple pattern when the gates are adapted, how compatible the circuit with device 

connectivity due to its sparse spatial connectivity and perform simple analytical gradient method and 

achieve numerical convergence during optimization of the VQE energy [14]. There are a variety of 

ansatz designs that satisfy the characteristic of efficient entangler circuit. This ansatz design method 

can be classified into three categories: i) Chemistry-inspired ansatzes which use the fundamental 

comprehension from quantum chemistry in a way that each term in ansatz defines the electron 

configuration. ii) The second is hardware-efficient ansatzes, which are built up from certain set of 

gates that can be easily implemented on quantum devices, however it can’t represent a chemical 

interpretation for each term. iii) The last one is Hamiltonian variational ansatzes which are usually 

described as the intersection between chemistry-inspired and hardware-efficient. 
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In this work, we are focusing on Chemistry-inspired ansatz. The gate synthesis features the exact 

preservation of all quantum numbers for each individual element, which is represented as quantum 

number preserving (QNP). The gate synthesis is focused to spin-restricted fermionic symmetry 

under Jordan-Wigner mapping method. As a typical setup, 𝑀 real orthogonal spatial orbitals are 

defined as {|𝜙𝑝⟩}
𝑝=0

𝑀
. Subsequently, 𝛼 and 𝛽 are denote as spins for each spatial orbitals, |𝜓𝑝⟩ ≔

|𝜙𝑝⟩|𝛼⟩ (|𝜓𝑝⟩ ≔ |𝜙𝑝⟩|𝛽⟩) for a total of 𝑁 ≔ 2𝑀 spin orbitals in spin-constricted formalism. The 

number of spin orbitals is associated with the number of 𝑁 qubits possessing interleaved ordering 

number … |1𝛽⟩ |1𝛼⟩ |0𝛽⟩ |0𝛼⟩.  The creation and annihilation acting in fermionic state are described 

in the qubit operators acting as, X, Y and Z based on Jordan-Wigner mapping in the ordering of “𝛼-

then- 𝛽” , 𝑝± ≔  (𝑋̂𝑝 ∓ 𝑖𝑌̂𝑝)/2 ⊗𝑞=0
𝑝=1

𝑍̂𝑞 and 𝑝̅± ≔ (𝑋̂𝑝̅ ∓ 𝑖𝑌̂𝑝̅)/2 ⊗𝑞=0
𝑝=1

𝑍̂𝑞̅ ⊗𝑞=0
𝑀−1 𝑍̂𝑞.  

 

Figure 1.6 Quantum circuit representation of Q building block. The four-bit Q gate is obtained 

from the four-local-nearest-neighbour qubits, and it is ordered alternativetly. Each Q gate has two 

parameters, one parameter of four-qubit spatial orbital rotation gate QNPOR(φ) and the other, 

four-qubit of pair exchange gate QNPPX(θ. Adapted from [15]. 
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According to [15], such ansatz gate operator on qubit is used, and 3 operators are introduced which 

associates with this ansatz, as 𝑁𝛼, 𝑁𝛽 and 𝑆̂2. 𝑁𝛼 and 𝑁𝛽 are the projection of α and β orbitals in 

XYZ, which can be expressed as:  

 

𝑁̂𝛼 ≔ ∑ 𝑝†𝑝 = ∑
𝐼 − 𝑍̂𝑝

2
𝑝𝑝

 

𝑁̂𝛽 ≔ ∑ 𝑝
†
𝑝 = ∑

𝐼 − 𝑍̂𝑝

2
𝑝𝑝

 , 

 

(21) 

and the spin-squared operator, 𝑆̂2 can be defined as: 

 𝑆̂2 ≔ ∑ 𝑝𝑞†𝑝̅†𝑞̅ +
(𝑁̂𝛼 − 𝑁̂𝛽)

2
+

(𝑁̂𝛼 − 𝑁̂𝛽)
2

4
𝑝 𝑞

 . (22) 

However, this operator doesn’t fulfill a local description in terms of Pauli operators in the Jordan-

Wigner mapping.  

One might expect that no local gate fabric could exactly preserve all three fermionic quantum 

numbers, because spin should be conserved until external force makes things different. The 

quantum-number-preserving gate synthesis should be achieved as demonstrated in Figure 1.6. In 

[15], gate structure was introduced, which represents multi electrons entanglement consists of many 

building blocks, labelled as 𝑄̂. This 𝑄̂ building block was obtained from the reduction of five-

parameter building block into two-parameter, one is the four-qubit spin-adapted spatial orbital 

rotation gate 𝑄𝑁𝑃𝑂𝑅(𝜑) and the other parameter is the four-qubit diagonal pair exchange gate 

𝑄𝑁𝑃𝑃𝑋(𝜃) as shown in Figure 1.6. 𝑄𝑁𝑃𝑂𝑅(𝜑) applies the spatial orbital Given rotation 𝐺 (𝜑), which 

is described as 2-qubits space gate structure acting in 𝜙0 and 𝜙1, where 𝜙0 and 𝜙1 are the basis 

vector as depicted in Figure 1.7 (b). This Given rotation 𝐺 (𝜑) can be expressed as 

|𝜙0⟩ → cos (
𝜑

2
)| 𝜙0⟩ + sin (

𝜑

2
) |𝜙1⟩ and |𝜙1⟩ → −sin (

𝜑

2
)| 𝜙0⟩ + cos (

𝜑

2
) |𝜙1⟩ using same orbital 

rotation which are implemented in the α and β orbitals. While 𝑄𝑁𝑃𝑃𝑋(𝜃) performs diagonal pair 
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Given rotation 𝐺 (𝜃) as |0011⟩ → cos (
𝜃

2
)| 0011⟩ + sin (

𝜃

2
) |1100⟩ and |1100⟩ →

−sin (
𝜃

2
)| 0011⟩ + cos (

𝜃

2
) |1100⟩. Figure 1.7 illustrates the details of 𝑄𝑁𝑃𝑂𝑅(𝜑) and 𝑄𝑁𝑃𝑃𝑋(𝜃) 

gate structure constructed by Given rotation gate, G.  

 

Figure 1.7 Detail of four-qubits spatial orbital gate 𝑄𝑁𝑃𝑂𝑅(𝜑) and four-qubits diagonal pair 

exchange gate 𝑄𝑁𝑃𝑃𝑋(𝜃) in which Given rotation G is implemented (a). The Given rotation is 

constructed from 4x4 matrix which consist of 𝑐 = 𝑐𝑜𝑠(𝜆/2) and 𝑠 = 𝑠𝑖𝑛(𝜆/2), where λ represents 

the angle of rotation (b and c). Adapted from [15].  
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1.3 Quantum Gate Synthesis and Optimization 

1.3.1 Theoretical background behind the quantum gate synthesis 

The value of an n-qubit register can be modified with quantum logic gates applied to selected qubits. 

However, implementing high number quantum gate in circuit can cause prohibitive difficulty for 

quantum computers. Therefore, an attempt should be performed to find a more efficient way by 

turning the desired quantum program acting on qubits into a low complexity circuit. This work is 

usually known as gate synthesis or circuit synthesis.  

The common strategy of gate synthesis is to decompose the circuit into a sequence of two-qubit gates 

[16]. It is possible to decompose two-qubit gates into circuits containing one-qubit gates, and a 

canonical two-qubit gate known as the controlled-not (CNOT). There were several works that have 

been done to carry out two-qubit decomposition. The first algorithm was published by combining 

two-qubits gate decomposition with QR decomposition formula. The author investigated that any 

operator of n qubits can be fabricated with a circuit containing 𝑂(𝑛34𝑛) elementary quantum gates 

[17]. Under this work, a lower bound on the number of elementary two-qubit gates was presumed to 

create an arbitrary n-qubit operator: 

 𝛺(𝑛) =
1

9
4𝑛 −

1

3
𝑛 −

1

9
 (23) 

Other works demonstrated the advantages with different complexities [18, 19, 20, 21, 22]. However, 

all the mentioned methods considered full connectivity between the qubits during the composition 

and to implement the quantum algorithms in the latest quantum computers, the quantum circuits 

must follow the device’s constraints. To achieve this, another method has been proposed such as 

introducing additional SWAP operations to make qubits adjoining each other by having two-qubits 

controlled gates. But this strategy can still cause error-correction, mapping and scheduling 
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measurement are still necessary to be applied when the quantum computational results are obtained 

[23]. 

The optimization of single qubit rotations and the gate structure is the most challenging and 

interesting field in simplifying gate decomposition problem. Madden and Simonetto have 

successfully eliminated trivial single-qubit gates. They derived a 14-CNOT 4-qubit Toffoli 

decomposition and compressed QSD by a factor of two without practical loss of fidelity [24]. Rakyta 

and Zimborás proposed a new algorithm based on iterative, sequential optimization (SO) of 

parameters to match it with quantum hardware limitations in inter-qubit connectivity. Without 

having extra SWAP gates, this method can be adopted to increase the total fidelity of the quantum 

circuit and it turned that 15 and 63 CNOT gates are enough to decompose general 3- and 4-qubits 

unitary [25]. However, this numerical approach only applies for general unitaries. 

Another algorithm was also introduced by this team later which was found to be more efficient to 

decompose not only for general unitary, but also any special unitary, such as Variational Quantum 

Eigensolver (VQE), which possesses special gate. Their methodology is based on adaptive circuit 

compression, in which by compressing the quantum circuit by sequential removal of two-qubit gates 

and the remaining building blocks are transformed into reduced gate structure by iterated learning 

cycles. The algorithm was tested for decomposition 3-, 4- and 5-qubits unitaries from several 

references and the numerical experiment results exhibited that highly optimized gate counts was 

obtained and could reduce more than 50% in 21% percent of the decomposed unitaries [26].  This 

remarkable algorithm will be applied in this current work in SQUANDER [27] package.  

To evaluate the distance of 𝑑 × 𝑑 unitary 𝑉 as a synthesized product from the original unitary 𝑈, 

Hilbert-Schmidt test can be utilized which is shown as follows: 
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 𝐶𝐻𝑆𝑇(𝑈, 𝑉) = 1 −
1

𝑑2
|𝑇𝑟 (𝑉†𝑈)|

2
 . (24) 

The fidelity of gate can be derived by aligning the state of fidelities from the output states (after the 

𝑈 and 𝑉 transformation, respectively) with Haar distribution and it can be calculated via Hilbert-

Schmidt test according to the equation.  

 𝐹̅(𝑈, 𝑉) = 1 −
𝑑

𝑑 + 1
𝐶𝐻𝑆𝑇(𝑈, 𝑉). (25) 

Alternatively, Madden implemented a different approach, Frobenius norm-based metric to measure 

the distance between two unitaries 𝑈 and 𝑉 : 

 𝑓(𝑈, 𝑉) =
1

2
‖𝑉 − 𝑈‖𝐹

2 = 𝑑 − 𝑅𝑒 [𝑇𝑟 (𝑈†𝑉)] , (26) 

and described a Frobenius based fidelity 𝐹̅𝐹(𝑈, 𝑉) by 

 𝐹̅𝐹(𝑈, 𝑉) = 1 −
𝑑

𝑑 + 1
+

1

𝑑(𝑑 + 1)
(𝑑 − 𝑓(𝑈, 𝑉))

2
 . (27) 

And it can be seen that 𝐹̅𝐹(𝑈, 𝑉)  ≤ 𝐹̅(𝑈, 𝑉). 

Equation (24) and (26) can be proficiently applied as a cost function in optimization process to find 

the best approximation of unitary 𝑈. Besides, the gradient descent optimization calculations can be 

improved numerically by calculating their gradient components analytically in relation to the free 

parameters of the decomposing quantum circuit, such as Broyden–Fletcher–Goldfarb–Shanno 

(BFGS) and Adaptive Moment (ADAM) optimization algorithms which is used in SQUANDER 

package which is used in this work as explained in | Appendix 1, and these 2 norms of cost function 

are observed and applied in the numerical optimization later on in this work.  

Nevertheless, in order to be compatibly applied for full approximation in quantum compiling, the 

cost function needs to be extended and can be expressed in the term with “bit-flit”, 𝑋 as proposed in 

[28] : 
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𝐶𝑙ℎ𝑠
𝑐𝑖𝑟𝑐𝑢𝑖𝑡

= 1

−
1

𝑑2
[|𝑇𝑟(𝑉†𝑈)|

2
+ (

𝑛 − 1

𝑛
) ∑|𝑇𝑟(𝑋𝑗𝑉†𝑈)|

2
𝑛

𝑗=1

+ (
𝑛 − 2

𝑛
) ∑|𝑇𝑟(𝑋𝑗𝑋𝑘𝑉†𝑈)|

2

𝑗<𝑘

+ ⋯ +
1

𝑛
∑ |𝑇𝑟(𝑋𝑗𝑋𝑘𝑋𝑙 … 𝑉†𝑈)|

2

𝑗<𝑘<𝑙<⋯

] . 

(28) 

   

This equation allows faster convergence when it is applied to classical compilation of quantum 

circuits. Unfortunately, the longer term in Equation (28) makes the gradient calculation even more 

difficult and a solution is introduced by simplifying the expression in Equation (28) than calculating 

each term explicitly [28]. Therefore, 𝛼1, … , 𝛼𝑘  is updated by using coefficient α during the 

optimization and the cost function turns into: 

 𝐶𝐿
(1)(𝜃) = 1 − |〈0|𝑉†(𝜃)|𝜓0〉|

2
− 𝛼1 ∑|〈0|𝑋𝑗𝑉†(𝜃)|𝜓0〉|

2
𝑛

𝑗=1

, (29) 

   

where θ is the number of parameters. When 𝐶𝐿
(1)

 comes close to 0, then the value of 𝛼 is gradually 

declined and reduce the influence of final term in Equation (30) since the cost function comes near 

to zero. The value of 𝛼(𝑘) = √𝐶𝐿
(1)(𝑘) and 𝛼(0) = 1 is considered in this update. It can be 

considered that 𝐶𝐿
(1)(𝛼) = is always positive since |0⟩ and all “bit-flipped” states establish an 

orthogonal basis. The goal of this weighting scheme is to make the grip narrower around the state 

|0⟩ while 𝐶𝐿
(1)(𝛼) surrounds zero. In this condition, all the flip term are stopped and 𝑉(𝜃)|0⟩ ≈ |𝜓0⟩ 

[28].   

1.3.2 Adaptive Circuit Compression Method 

Adaptive circuit compression method is generally based on the elimination of parametric two-qubit 

gates from the circuit. The given quantum circuit is compressed, until there will be no additional 
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two-qubit components. Controlled rotation (CR) two-qubit gates are used in this algorithm, which 

can be tuned via continuous parameter. Moreover, these two-qubit gates are advantageous due to its 

versatility to represent quantum circuit elements [26]. CR gates can be mapped to special two-qubit 

gates such as CNOT and CZ gate. In principle, CR gates can be decomposed into two CNOT gates 

and any CNOT gate in the circuit can be transformed into CR gate, since CNOT gate is the special 

case of CR gate. In addition, any unitary 𝑈 can be synthesized since the set of CR and general qubit 

rotation (U3) gates form a universal gate set. In particular, SQUANDER implements controlled Ry 

rotation gate, and this gate is further decomposed into elementary gates as shown in Figure 1.8. By 

taking this approach, we are able to reconstruct the structural combinatorial problem of placing the 

elementary two-qubit gates in a circuit as an optimization problem over continuous variables [26]. 

The meaning of ‘adaptive circuit compression' is that CR gates correlate during compression, all of 

them respond when a two-qubit block is removed from the design, and our circuit compression 

strategy would not be limited to local cancellations of two-qubit gates. If the reduced gate structure 

optimization problem can be solved, then the two-qubit block chosen for the system can be 

eliminated as a dispensable one.  

 

Figure 1.8 Controlled Ry gate which is generally expressed in terms of two CNOT and Ry gates. 

 

A quantum circuit which approximates unitary U is initially determined to commend the 

decomposition with optimized gate count by periodical repeated unit cells which are constructed 
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from two-qubit building blocks. Each building blocks are fabricated from two general qubit rotation 

(U3) gates which run on each qubit and one single controlled Ry gates [26]. After the unitary 𝑈 is 

successfully reproduced by trail circuit, the algorithm begins to run the compression cycles. For each 

iteration, random two-qubit building block is picked and eliminated from the system if it can follow 

to the changed structure by looking a new solution for the optimization process. In the end, when 

the algorithm can’t find other removable building blocks, then CR gates is expanded and the gate 

synthesis of the unitary is terminated with a final optimization iteration [26].  
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2 | Methodology 

This chapter describes the details of work involved in the quantum gate synthesis circuit generating 

entangled state and calculating ground state energy for fermionic systems. Initially, a quantum 

circuits is constructed for Q building block as shown in Figure 1.6 and the unitary matrix 

representation of this Q gate is decomposed via adaptive circuit compression algorithm in 

SQUANDER along line topology, because this method can be run in the constraints of current 

quantum devices. 6 different cost functions with different number of correction factor, 𝑘 , with 𝑘 

from 0 to 2 for each Frobenius and Hilbert-Schmidt norm of cost function based on Equation (29),  

are applied in two common optimizers, ADAM and BFGS for numerical optimization method and 

the goal of this work is to compare these optimization algorithms and observe which one can provide 

faster decomposition process for the given quantum circuit as proposed in [15].  

2.1 Quantum Circuits Generation 

Numerical investigation has been conducted for the synthesized gate 𝑄 =  ∏. 𝑄𝑁𝑃𝑃𝑋(𝜃)𝑄𝑁𝑃𝑂𝑅(𝜑) 

as shown in Figure 1.6 to determine the ground state energy of p-benzyne  and  naphthalene [15]. P-

benzyne, which possesses biradical open-shell singlet ground state, accompanied by two unpaired 

electrons and naphthalene, which is not basically biradical, however it shows several natural orbitals 

with significant deviations from Hartree-Fock (HF) natural orbital occupation number. The result 

revealed that the produced gate provided higher accuracy than either HF or doubly occupied 

configuration interaction (DOCI). However, this simulation was conducted with a full connectivity 

circuit of Q gate structure, where this method is rather be avoided since it is hard to be adapted with 

the constraint of quantum computer.   

In this work the unitary matrix representation of Q gate structure as shown in Figure 1.6 is 

decomposed and optimized for line connectivity topology, because we need to adapt it with the 
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constraints of existing quantum devices. Two qubit gate operations are assumed as a pair during the 

decomposition, such as 0-1, 1-2, and 2-3 qubit pairs. With this decomposition, these qubit pairs can 

be implemented to existing quantum devices, for instance the Sycamore processor. Besides, the 

accomplishment of gate 𝑄 on line topology entitles for scaling up of the variational quantum circuit 

on Sycamore quantum chip by arranging the involved qubits into “Z” shaped geometry as depicted 

in Figure 2.1. In this Figure, it is also depicted that the connection between each Q block is exhibited 

since Q blocks need to overlap with other 2 qubits as previously elucidated in Figure 1.6.  

 

 

Figure 2.1 The qubits placement in the Sycamore processor's layout. Red contour determines the 

set of qubits on which block gates 𝑄 =  ∏. 𝑄𝑁𝑃𝑃𝑋(𝜃)𝑄𝑁𝑃𝑂𝑅(𝜑) and 0,1,2 and 3 numbers are the 

qubits that are associated with this Q block. Another colour represents another Q block and it can 

be viewed that between each Q blocks, overlapping exist on 2 qubits. Edited from [29]. 
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Figure 2.2 Quantum circuit representation of 𝑄 =  ∏. 𝑄𝑁𝑃𝑃𝑋(𝜃)𝑄𝑁𝑃𝑂𝑅(𝜑) as proposed in 

[15].In this figure, it can note that there is no limitation in the connectivity between qubits.  

 

The proposed quantum gate structure as exhibited in Figure 2.2 is later decomposed onto 

architectures with line connectivity. Using the newly developed adaptive decomposition strategy of 

SQUANDER package, the optimized Q block circuit consists of pair exchange gate 𝑄𝑁𝑃𝑃𝑋(𝜃)  and 

orbital givens rotation gate 𝑄𝑁𝑃𝑂𝑅(𝜑) on topology can be achieved. This gate construction is 

constructed using Qiskit package in Python. Besides, as it was proposed in [15], by placing fixed 

spin-adapted orbital rotation gate, ∏ = 𝑄𝑁𝑃𝑂𝑅(𝜋), can increase the efficiency during gradient based 

parameter optimization, 𝑄 =  𝑄𝑁𝑃𝑂𝑅(𝜋)𝑄𝑁𝑃𝑃𝑋(𝜃)𝑄𝑁𝑃𝑂𝑅(𝜑) block circuit was then generated and 

further investigated in this work due to more advantageous for gradient-based parameter 

optimization process as proposed in [15]. The line connectivity decomposition gate of 𝑄 =

 𝑄𝑁𝑃𝑂𝑅(𝜋)𝑄𝑁𝑃𝑃𝑋(𝜃)𝑄𝑁𝑃𝑂𝑅(𝜑) on topology with calculated for θ = 0.68π and φ = 0.21π can be 

viewed in Figure 2.3.  
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2.2 Brief description of optimization method 

In this work, the decomposition of the extended gate 𝑄 =  𝑄𝑁𝑃𝑂𝑅(𝜋)𝑄𝑁𝑃𝑃𝑋(𝜃)𝑄𝑁𝑃𝑂𝑅(𝜑) was 

examined on line connectivity topology using the adaptive algorithm which is implemented in 

SQUANDER package. The simulation was performed in a computer device with Intel Core i5-

4200U @1.6 GHzx4 processor having 8 GB memory. Two optimization algorithms were used, the 

BFGS and ADAM optimization algorithms. Gradient-based optimization exploits the information 

from cost function derivatives. First-order optimizers use only first-order derivatives of cost 

function, while second-order optimizers harness the Hessian of cost function, or the local curvature 

of learning landscape. Besides BFGS and ADAM, there are still some well-known optimizers such 

as Simple gradient descent and RMSProp, however in this work, we just limited the investigation 

only for BFGS and ADAM optimizers.  

 

Figure 2.3 Decomposed quantum circuit representation of the 𝑄 =

 𝑄𝑁𝑃𝑂𝑅(𝜋)𝑄𝑁𝑃𝑃𝑋(𝜃)𝑄𝑁𝑃𝑂𝑅(𝜑) gate on topology for for the case θ = 0.68π and φ = 0.21π. It can 

be seen that nearby qubits are connected over a line. 
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Quantum circuit of Q block, 𝑄 =  𝑄𝑁𝑃𝑂𝑅(π)𝑄𝑁𝑃𝑃𝑋(𝜃)𝑄𝑁𝑃𝑂𝑅(𝜑), was prepared and parameter θ 

was set to 0,68π and φ was fixed to 0.21π. Then we optimize the rotational parameters for randomly 

picked θ value between 0 and 2π. Once it was ready, the chosen optimization algorithm between 

BFGS and ADAM with 6 cost functions represents different term for each Frobenius and Hilbert-

Schmidt norm of cost functions according to Equation (24) and (26), were run. The numerical 

analysis was conducted, and the iterations proceed as it was input. Lastly, when the algorithm does 

not find any progress after some number of iterations, the optimization will be terminated, and the 

gate synthesis process will be completed.  

The observation was conducted in different iteration numbers varying from 100, 500, 1000, 5000 

and 10000 with tolerance limit was set at 10-8. The average time and average decomposition error 

from the quantum gate synthesis were collected and plotted. Subsequently, the results were observed 

and compared between the 6 different norm of cost functions. Thus, from those two optimizers, an 

investigation was also undergone to examine the influence of tolerance variation: 10-12, 10-10, 10-8 , 

10-6 , and 10-4 towards decomposition time and decomposition error observing at small iteration 

number 100 and higher iteration number 5000 and we can conclude which algorithm is the most 

effective one for the quantum gate synthesis process of the given quantum circuit as proposed in 

[15].   
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3 | Results and Discussion 

Using Adaptive decomposition algorithm as presented in [26], the gate synthesis was successfully 

carried out as described in 2.2. All the obtained results were collected, and the average value of 

several executions were calculated and represented here. Besides, stable execution time and results 

were found out for several runs for each norm of cost functions in both optimizers.  

 

Figure 3.1 Iteration count over average execution time comparison for ADAM and BFGS 

optimizers with 6 different norms of cost functions in gate synthesis of Q gate structure. The 

dashed lines exhibit the enlarged view of 3 Hilbert-Schmidt norm of cost function and the average 

time range view of these 3-cost function is represented in the right side of the graph.  

 

Figure 3.1 demonstrates the execution time plot for both ADAM and BFGS optimizers during the 

synthesis. As one can see, with Frobenius form of cost functions in ADAM optimizer, the synthesis 

completion time grows steadily as the iteration number increases. If we look thoroughly through this 

time result, with the addition of number of correction order number, 𝑘, in cost function, the execution 

time is also slightly more required which can be investigated by the increment of the gradient for 3 

Frobenius cost function curves. Meanwhile, with Hilbert-Schmidt test of cost function, ADAM 
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optimizer shows stable completion time for almost all of terms in Hilbert-Schmidt norm. 

Additionally, if we look through the closer view of the result from Hilbert-Schmidt cost function, 

the cost function without correction order reaches the completion time at low maximum iteration = 

100 number about 0.35 seconds which is almost similar compared for 𝑘 = 1 and 𝑘 = 2. Since these 

values are quite close to each other, it means that the effect of correction order becomes less 

important for Hilbert-Schmidt norm of cost function. Nonetheless, when the maximum iteration 

number is set to a higher number, the cost function with correction order possesses almost similar 

decomposition time. It can be noted that at maximum iteration number equals to 10000, the cost 

function without correction order reaches the execution time near to 0.35 seconds, similarly when 

the correction order is added to 1 and 2.  

Furthermore, BFGS optimizer exhibits different trends in execution time during this gate synthesis 

procedure. With Frobenius norm of cost function, the completion time is quite rapid close to 0 

second, when the number of correction order, 𝑘, is not introduced. But, when 𝑘 is equal to 1, the 

average time is somewhat escalates as depicted in Figure 3.1 about to around 1.6 seconds which 

remains stable until maximum iteration number is set to higher value. The red line curve, which 

portrays Frobenius cost function with 𝑘 = 1, is moderately higher than the curve represented 

Frobenius cost function without any correction factor, represented by black line, can reach the 

decomposition under 0.74 seconds when the maximum iteration is set to 10000. Interestingly, 

dramatic surge of time required is found when the number of correction factor, 𝑘, is increased to 2 

as the number of iterations is ascended and it can be noted that the gate synthesis completion time 

increases linearly, therefore in the further investigation, this cost function will be excluded, looking 

to the completion time produced, we won’t reach fast decomposition if we apply this algorithm. 

Whilst, , the execution time of Hilbert-Schmidt cost functions applied in BFGS optimizer are almost 

as fast as in ADAM  and interestingly when we look up to the enlarged curves of the 3 cost function 
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of Hilbert-Schmidt, the decomposition time is only diverged in the scale of 10-3 compared to the 

ADAM optimizer, without the presence of correction order, the completion time can be reached at 

around 0.35 seconds when maximum iteration equals to 100, while the other cost functions, which 

contain correction order, 𝑘 = 1 and  𝑘 = 2, exhibit results with more or less the same value. But, 

when this maximum iteration value is increased, the decomposition time is practically similar, and 

it reaches around 0.35 seconds at maximum iteration number = 10000 and with the addition of 

correction order, the decomposition is completed at the same time as depicted in Figure 3.1. 

Decomposition error results were also obtained and depicted in Figure 3.2. Unfortunately, although 

Frobenius norm of cost functions without correction order or with the correction order equals to 1 

produces fast execution time, however, their decomposition error is far beyond the expectation 

because they display decomposition error at high number, above 1. This value is not demanded as 

an efficient algorithm to be applied for the quantum gate synthesis. Therefore, in the further step, 

these two cost functions are disbarred from the investigation. 

In Figure 3.2 left graph, all Hilbert-Schmidt norm of cost functions exhibit small value of 

decomposition error in ADAM optimizer. One can note that even when the maximum iteration is 

enhanced, the errors most likely remain the same. Although, the correction order number is added, 

the error stays a in the nearby value, that the presence of correction factor doesn’t give any significant 

change to the convergence of decomposition process and these errors are comparable to the machine 

precision, means that the computed error is very small and lies within the range of precision that can 

be represented by the numerical system used by the machine. In detail, Hilbert-Schmidt function 

without the addition of correction order possesses close to ~1E-15 of error at low iteration even at 

high numbers of maximum iteration. While, with correction order k =1 or k=2, the decomposition 

error remains stable.  
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Figure 3.2 Decomposition Error result of Q gate in SQUANDER for both ADAM and BFGS 

optimizers. The Y axis is set to only 1E-11. In this range of decomposition errors, only 3 Hilbert-

Schmidt norm of cost function which can be included to the criteria as efficient logarithm which 

can be applied since they generate very small number of decomposition errors. 

 

For BFGS Optimizer, the errors produced are as low as in ADAM Optimizer, which is portrayed in 

Figure 3.2 the right graph. By introducing the correction order, the decomposition errors persist in 

the same range of value although the maximum iteration numbers grow. The trend obtained is similar 

to ADAM optimizer, the error reached is in the same level around ~1E-15. The presence of 

correction order is the same less essential, the Hilbert-Schmidt norm still possesses the constant 

value of error. Thus, looking from the given error values, the Hilbert-Schmidt cost function generates 

the error value close to each other even with BFGS optimizer and it can be concluded even with 

BFGS optimizer, that the Hilbert-Schmidt cost function error is close to machine precision.  

As it is described in 2.2, the next observation is to investigate the execution time and decomposition 

error for 3 Hilbert-Schmidt cost functions, which seems to be a good candidate in 2 optimizers 

towards varied tolerance, 10-12, 10-10, 10-8, 10-6, and10-4. Figure 3.3 exhibits the decomposition time 
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in both optimizers with 2 different maximum iteration numbers,100 and 5000. As can be observed, 

Hilbert-Schmidt norm of cost functions requires short time to execute the decomposition in all range 

of given tolerances. At small tolerance number, the decomposition time in both optimizers is almost 

close to each other even though when the tolerance number is set in high number. One can be noticed 

that in ADAM optimizer, when the maximum iteration number is adjusted to 100 (Figure 3.3 a), the 

decomposition time can be achieved still around 0.35 seconds at small tolerance number, 10-12, even 

when the correction order is counted (𝑘 = 1) and (𝑘 = 2). At high tolerance number, it still reaches 

indistinguishable result around 0.34 seconds when 𝑘 equals to 0, simultaneously with the correction 

order, (𝑘 = 1) and (𝑘 = 2) the required time are similar. As well as, this trend is not completely 

diverged when the maximum iteration is set to higher number, for instance at 5000 as depicted in 

Figure 3.3 b. The correction order effect is almost negligible, proved by the similar completion time 

whether at low or higher tolerance number. When the tolerance limit is set to 10-12, around 0.35 

seconds of completion is achieved when 𝑘 = 0, similarly at higher correction order, 𝑘 = 1, and 𝑘 =

2, indifferent decomposition time are recorded. At maximum iteration equals to 5000, the 

decomposition time required is also around 0.35 seconds for Hilbert-Schmidt cost function (𝑘 = 0), 

alike when the correction orders are introduced, (𝑘 = 1) and (𝑘 = 2), the execution time needed is 

analogous.  

In BFGS optimizer, the existence of correction factor is still trivial, which is proved by the 

completion time produced are still in the same range shown by ADAM optimizer. In Figure 3.3 b., 

despite the fact that there is a gap between the three curves, however the difference between these 

three curves is quite small, in the range of 10-3. At this low maximum iteration number (max. 

iteration =100), Hilbert-Schmidt function can complete the decomposition under 0.34 seconds with 

the absence of correction order, when it is observed at low tolerance number, 10-12. Likewise, when 

the correction order is added to 𝑘 = 1  and 𝑘 = 2. Although at high tolerance number, the 
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completion time is reached in the same range value. For instance, when it is set to higher number, 

(𝑘 = 2), the decomposition can be completed under 0.33 seconds, and when 𝑘 = 1 also 𝑘 = 0. By 

increasing the maximum iteration number to the higher value, the decomposition still remains stable, 

as shown in Figure 3.3 d. Starting at low tolerance number, 10-12, the decomposition is undergone 

after 0.35 seconds when the correction order is not introduced. Uniformly, when it is added, it 

reaches a similar execution time for the first correction and for the second correction. In higher 

tolerance number, the tendency is the same, while the highest correction order, 𝑘 = 2, posseses 

decomposition time at 0.34 seconds, comparably when it is run for 𝑘 = 1 and 𝑘 = 0.  

Decomposition errors are also measured for various tolerance number’s range and plotted in Figure 

3.4. In ADAM optimizer, correction order doesn’t give some refinement effect to the convergence 

achieved during the decomposition, showing the decomposition errors are still close to each other. 

When tolerance is set to 10-12, cost function without the presence of correction order still has the 

decomposition error ~1E-15, even at high tolerance number, it exhibits the similar value of 

decomposition (showed by the star red shape). Furthermore, when we observe at higher maximum 

iteration number (showed by the blue colour), the tolerance number equals to 10-12, the Hilbert-

Schmidt cost function with 𝑘 = 0 still has identical decomposition error. Nonetheless, the trend 

remains in the same range of 10-15 even with the addition of correction order.   

Like in ADAM optimizers, in spite of added correction order, the decomposition error immovably 

catches to ~1E-15 for 𝑘 = 1 and for 𝑘 = 2, or even without the correction order at tolerance equals 

to 10-12 and maximum iteration number is 100. Even at higher value, the introduction of correction 

order doesn’t give any significant alteration to the decomposition error. Despite the fact when the 

tolerance is set to 10-4 and the maximum iteration number equals to 5000.  
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Figure 3.3 Average decomposition time for 3 different Hilbert-Schmidt cost functions. a) with 100 

iterations in ADAM Optimizer, b) with 100 iterations in BFGS Optimizer, c) with 5000 iterations 

in ADAM Optimizers, and d) with 5000 iterations in BFGS Optimizer. 

 

As it can be seen from all the observation result, Hilbert-Schmidt norm proves an efficient and 

effective to be applied in gate synthesis process. Hilbert-Schmidt norm possesses low decomposition 

error and the execution time required is quite short. This can also be caused because when 

approximating a matrix using a lower rank matrix, the Hilbert-Schmidt norm encourages the 

approximation to preserve more of the structure of the original unitary matrix, whereas the Frobenius 

norm may allow more of this structure to be lost in the approximation [30]. Besides, Hilbert-Schmidt 



33 

 

norm provides a more complete measure of the size of a matrix than the Frobenius norm and this 

can be particularly important in quantum system, where the wave function can be high-dimensional 

and complex [31]. 

 

Figure 3.4 Decomposition error for 3 different Hilbert-Schmidt cost functions. Red colour 

indicates the result for 100 iterations, blue colour indicates the result for 5000 iterations. 

 

It can be seen from the obtained result that Hilbert-Schmidt norm cost function has a closeness to 

machine precision when it is applied for quantum gate synthesis of Q block gate as proposed in [15], 

unfortunately the introduction of the correction order as proposed in [28] doesn’t give a significant 

impact to the Hilbert-Schmidt cost function whether it is applied in ADAM or BFGS optimizer. 

However, it is still important to note that the Hilbert-Schmidt cost function error being close to 

machine precision is not guaranteed in all cases. Depending on the specific problem and 

implementation details, the error may vary.   
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4 | Summary 

The main goal for this work is to observe and find the most efficient and effective cost function to 

be applied between 6 different cost functions which in 2 commonly used optimizers, ADAM and 

BFGS for quantum gate synthesis of molecular simulations case. The Q block quantum circuit was 

prepared as proposed in [15] and the unitary matrix of this circuit was decomposed in SQUANDER 

using Adaptive Circuit Compression Method along line topology, because this method can follow 

quantum device’s constraint. These 6 different cost functions consist of Frobenius norm without 

correction factor (𝑘 = 0) and the other form with correction factor (𝑘 = 1) and (𝑘 = 2) .The rest 

are Hilbert-Schmidt norm without correction factor (𝑘 = 0), and with correction factor (𝑘 = 1) and 

(𝑘 = 2) . They were then executed in ADAM and BFGS optimizers with different number of 

iterations. Further investigation was also conducted into various number of tolerance limits.  

Hilbert-Schmidt norm revealed good stability during the decomposition process of Q block quantum 

circuit by showing the steady execution time and decomposition error whether the correction factor 

is introduced or not. Even at higher iteration number, Hilbert-Schmidt norm of cost functions 

exhibited short execution and excellent decomposition error result. This property still can be also 

observed at small number of tolerance limit. Thus, Hilbert-Schmidt norm of cost function can be 

comparable to machine precision when it is applied for quantum gate synthesis of Q-block gate.   
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VIII 

 

| Appendix 1 

Adaptive moment (ADAM) optimizer is an extensively applied optimization strategy which was 

adapted from deep learning neural networks. The ADAM optimizers generate efficient stochastic 

optimization with only first-order gradient and employ adaptive moment estimation. The most 

highlighted feature of ADAM optimizer is the momentum, which is influenced by the ball’s 

momentum with friction. ADAM overcomes some local minima by reusing past parameter upgrades 

with an exponential decay towards the past.  

ADAM algorithm can be briefly summarized as follows: First hyperparameters {𝜂, 𝛽1, 𝛽2, 𝜀}, 

momentum 𝑚(0) = 0, average square gradient 𝑣(0) = 0 are set. 𝛽1 are usually known as moving 

average parameter for past gradients and 𝛽2 is moving average parameter for past squared gradients. 

At t-th step, the momentum and the cumulated squared gradient are updated as: 

 𝑚(𝑡) =
𝛽1 − 𝛽1

𝑡

1 − 𝛽1
𝑡 𝑚(𝑡−1) +

1 − 𝛽1

1 − 𝛽1
𝑡 ∇ (𝐸(𝜃(𝑡))) , (30) 

 

 𝑣(𝑡) =
𝛽2 − 𝛽2

𝑡

1 − 𝛽2
𝑡 𝑣(𝑡−1) +

1 − 𝛽2

1 − 𝛽2
𝑡 ∇ (𝐸(𝜃(𝑡)))

⌾2

 , (31) 

where ()⌾2 represents the elementwise square of a function. The parameter update is then 

formulated into update quantities through:  

 𝜃(𝑡+1) = 𝜃(𝑡) −
𝜂

√𝑣(𝑡)
⌾

+ 𝜀
𝑚(𝑡) . (32) 

The square root of 𝑣(𝑡) taken elementwise. 𝜀 denotes as regularizer, which prevents unreasonably 

large updates in flat regions and dividing by zero at initialization. Due to the utilization of moving 

average for both momentum and magnitude estimations, ADAM algorithm can be applied to 

conditions with noisy gradients.  
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Second-order optimization utilizes the second-order derivative of the objective function to decide 

the descent direction. In this type of optimizers, Broyden–Fletcher–Goldfarb–Shanno (BFGS) 

algorithm is focused. A global line search is performed in the direction of the gradient transformed 

by the Hessian inverse, using only first-order resources. Even conventional problems with large 

parameter spaces are difficult to calculate precisely with the Hessian. The optimization is 

commenced by setting of starting point 𝜃(0) and first approximation of Hessian of cost function 𝐻(0) 

to the identity. The gradient of each step brings the direction which is formulated as: 

 𝑛(𝑡) = 𝐻(𝑡)−1∇𝐸(𝜃(𝑡)) , (33) 

and implement a line search on {𝜃(𝑡) + 𝜂 𝑛(𝑡)|𝜂 ∈ ℝ} which This gives the best update in that 

direction and can optionally be limited to a bounded parameter space. With the new point in 

parameter space, 𝜃(𝑡+1), the gradient change is computed as: 

 𝐷(𝑡) = ∇𝐸(𝜃(𝑡+1)) − ∇𝐸(𝜃(𝑡)) , (34) 

and this gradient change is utilized to update the approximate Hessian as: 

 𝐻(𝑡+1) = 𝐻(𝑡) +
𝐷(𝑡)𝐷(𝑡)𝑇

𝜂(𝑡)𝐷(𝑡)𝑇
𝑛(𝑡)

−
𝐻(𝑡)𝑛(𝑡)𝑛(𝑡)𝑇

𝐻(𝑡)

𝑛(𝑡)𝑇
𝐻(𝑡)𝑛(𝑡)

 . (35) 

Although analytical methods can overcome the calculation of Hessian in variational ansatz, it is 

still strenuous to estimate the full Hessian. Therefore, BFGS method is usually employed as early 

stage of conventional algorithm or base comparison for the newest developed optimizer. 


